Direct interaction with filamins modulates the stability and plasma membrane expression of CFTR.
نویسندگان
چکیده
The role of the cystic fibrosis transmembrane conductance regulator (CFTR) as a cAMP-dependent chloride channel on the apical membrane of epithelia is well established. However, the processes by which CFTR is regulated on the cell surface are not clear. Here we report the identification of a protein-protein interaction between CFTR and the cytoskeletal filamin proteins. Using proteomic approaches, we identified filamins as proteins that associate with the extreme CFTR N terminus. Furthermore, we identified a disease-causing missense mutation in CFTR, serine 13 to phenylalanine (S13F), which disrupted this interaction. In cells, filamins tethered plasma membrane CFTR to the underlying actin network. This interaction stabilized CFTR at the cell surface and regulated the plasma membrane dynamics and confinement of the channel. In the absence of filamin binding, CFTR was internalized from the cell surface, where it prematurely accumulated in lysosomes and was ultimately degraded. Our data demonstrate what we believe to be a previously unrecognized role for the CFTR N terminus in the regulation of the plasma membrane stability and metabolic stability of CFTR. In addition, we elucidate the molecular defect associated with the S13F mutation.
منابع مشابه
RACK1 interacts with filamin-A to regulate plasma membrane levels of the cystic fibrosis transmembrane conductance regulator.
Mutations in cystic fibrosis transmembrane regulator (CFTR), a chloride channel in the apical membranes of secretory epithelial cells, underlie the fatal genetic disorder cystic fibrosis. Certain CFTR mutations, including the common mutation ΔF508-CFTR, result in greatly decreased levels of active CFTR at the apical membrane. Direct interactions between CFTR and the cytoskeletal adaptors filami...
متن کاملRegulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1
Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...
متن کاملStabilizing Rescued Surface-Localized ΔF508 CFTR by Potentiation of Its Interaction with Na+/H+ Exchanger Regulatory Factor 1
Cystic fibrosis (CF) is a recessive genetic disease caused by mutations in CFTR, a plasma-membrane-localized anion channel. The most common mutation in CFTR, deletion of phenylalanine at residue 508 (ΔF508), causes misfolding of CFTR resulting in little or no protein at the plasma membrane. The CFTR corrector VX-809 shows promise for treating CF patients homozygous for ΔF508. Here, we demonstra...
متن کاملN-glycans are direct determinants of CFTR folding and stability in secretory and endocytic membrane traffic
N-glycosylation, a common cotranslational modification, is thought to be critical for plasma membrane expression of glycoproteins by enhancing protein folding, trafficking, and stability through targeting them to the ER folding cycles via lectin-like chaperones. In this study, we show that N-glycans, specifically core glycans, enhance the productive folding and conformational stability of a pol...
متن کاملThe PDZ-interacting domain of cystic fibrosis transmembrane conductance regulator is required for functional expression in the apical plasma membrane.
Polarization of cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel to the apical plasma membrane in epithelial cells is critical for vectorial chloride transport. Previously, we reported that the C terminus of CFTR constitutes a PDZ-interacting domain that is required for CFTR polarization to the apical plasma membrane and interaction with the PDZ doma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 117 2 شماره
صفحات -
تاریخ انتشار 2007